36 research outputs found

    Metabolomic characterization of strawberry cultivars during postharvest

    Get PDF
    The cultivated strawberry (Fragaria x ananassa) is the berry most consumed worldwide and is well-known for its delicate flavour and nutritional characteristics. However, strawberries possess a very short postharvest shelf-life due to their high respiration rate and their susceptibility to water loss, mechanical damage and fungi deterioration. Extension of fruit shelf-life is a major economic goal, and measures are commercially taken to delay senescence. These procedures include low temperature, controlled atmosphere and/or chemical treatments, being the first one the most commonly applied. To improve our understanding of the molecular and biochemical mechanisms underlying the deterioration of fruit quality attributes during senescence, we monitored the metabolomic profiles of five commercial strawberry cultivars under different postharvest treatments. Ripe fruits of F x ananassa cv. ‘Amiga’, ‘Camarosa’, ‘Candonga’, ‘Fortuna’ and ‘Santa Clara’ were harvested and kept at 4ºC during three, six and ten days in normal, CO2-enriched and O3-enriched atmospheres. We used a combination of GC-TOF-MS, LC-MS and GC-SPME-MS to identify and semi-quantify 49 primary metabolites (sugars, amino and organic acids), 132 polar secondary metabolites and 70 volatile compounds in all different treatments along postharvest stages. Multivariate statistical approaches, including hierarchical cluster analysis, partial least squares discriminant analyses and k-means clustering, were used to characterize the variation in metabolite content during the strawberry fruit postharvest life and to identify the biochemical pathways which are most affected in the senescence processes. Here, we present the main changes in volatile compounds, primary and secondary metabolites as a consequence of postharvest storage, highlighting the differences between cultivars and treatments. Network-based methods will allow us to point out the regulatory factors and molecular mechanisms underlying fruit senescence.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Metabolomics profiling of strawberry (Fragaria x ananassa) F1 population to characterize flavour and nutritional traits

    Get PDF
    The cultivated strawberry (Fragaria x ananassa) is a highly consumed fruit known for its delicate flavour and nutritional characteristics. However, as fruit quality attributes have been lost after years of traditional breeding, new technological tools, such as high throughput metabolomics, are necessary for the identification of factors responsible of these traits. Here we present the metabolomics profiling for the content of primary and secondary metabolites of a 95 F1 individuals strawberry population derived from genotype “1392”, selected for its superior flavour, and “232” (Zorrilla-Fontanesi et al., 2011; Zorrilla-Fontanesi et al., 2012). Metabolite profiling was performed on mature fruits of the strawberry population using gas chromatography hyphenated to time-of-flight mass spectrometry for primary metabolites and ultra performance liquid chromatography Exactive Orbitrap tandem mass spectrometry for secondary metabolites.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effects of anti-herbivore resistance on sensory characteristics and ripening of strawberry

    Get PDF
    Plant resistance to agricultural pests is a fundamental element of sustainable crop protection. However, concerns have been raised that strategies to increase resistance may involve phytochemicals that impact fruit ripening and the sensorial perception of the fruit. Here, we experimentally tested for these putative resistance effects by contrasting susceptible varieties of strawberry (Fragaria vesca) with varieties that were either constitutively resistant to pest insects or with resistance induced with jasmonic acid (JA). GC-MS analysis identified 11 volatile compounds, including alcohols, aldehydes, lactone, terpenoids, and esters, which showed higher concentrations in fruits from resistant/induced plants. Fruits from induced plants ripened faster in the field. In sensory analyses, using a trained analytical panel, some variation between the sensory profiles of the strawberry varieties was detected, but we found no systematic correlations between sensory attributes and the level of plant resistance/induction in the varieties. These results suggest that increased plant resistance comes with positive effects of early ripening, while not strongly affecting the overall sensory experience

    Is a member of udp- glycosyltransferase regulating ellagitannins metabolism in strawberry?

    Get PDF
    Fresh strawberries are a popular and important component of the human diet. The demand for highquality fruits is increasing globally, challenging breeders to develop modern strawberry cultivarsthat fulfill all desired characteristics. Fruit flavor and nutritional characteristics are key quality traitsand ones of the main factors influencing consumer preference. Shikimate and phenylpropanoidpathways produce many chemical compounds, like phenolic compounds, polyphenols and tannins,thatarehighlyvaluable in human nutrition offering antioxidant protection and contribute to the prevention of some diseases. Among them, the hydrolysable tannins, like ellagitanins and ellagic acid, have an effect on health in some human diseases such as breast and prostate cancers or neurodegenerative diseases (Basu et al., 2014). In a previous study, Pott et al., (2020) found 110 stable QTL for secondary metabolism by studying the F1 population derived from the crossing of ‘232’ and ‘1392’ (Zorrilla Fontanesi et al., 2011). Among these QTLs, we highlighted one that was responsible for 50-70% of the variation of ellagic acid hexose. A RNAseq with contrasting lines in ellagic acid hexose content was performed to reveal 11 differentially expressed genes (DEGs) with a false discovery ratio under 0.05. Candidate genes were functionally annotated using MapMan software. One gene raised as a candidate gene, annotated as UDP-glycosyltransferase suggesting to participate in the glycosylation of ellagic acid. In addition, we found that the gene expression of this candidate was negatively correlated with proanthocyanidin and flavan-3-ols content, providing an evidence of possible metabolic flux redirection through the synthesis of ellagitannins. However, further experiments are needed to confirm the role of this gene in the synthesis of ellagitannins.This work was supported by grants RTI 2018-099797-B-100 (Ministerio de Ciencia, Innovación y Universidades, Spain) and UMA18-FEDERJA-179 (FEDER-Junta Andalucía). In addition, we acknowledge partial funding by PY20_00408 (PAIDI 2020-Junta de Andalucía). JGV acknowledges the EMERGIA Programme (EMERGIA20_00309-Junta de Andalucía). J.M. thanks to Ministerio de Ciencia, Innovación y Universidades (PRE2019-091188). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Metabolite profiling of postharvest senescence in different strawberry cultivars

    Get PDF
    The cultivated strawberry (Fragaria x ananassa) is the berry most consumed worldwide, being well appreciated for its flavour and nutritional characteristics. However, strawberries possess a very short postharvest shelf-life due to their high respiration rate and their susceptibility to water loss, mechanical damage and fungi deterioration (Feliziani and Romanazzi, 2016). Extension of fruit shelf-life is a major economic goal, and measures are commercially taken to delay senescence, including the use of low temperature storage alone or in combination with controlled atmosphere (Pedreschi and Lurie, 2015). To improve our understanding of the molecular and biochemical mechanisms underlying the deterioration of fruit quality attributes during senescence, we realized a metabolite profiling of five commercial strawberry cultivars under different postharvest treatments. Ripe fruits were harvested and kept at 4ºC during three, six and ten days in ambient, CO2-enriched and O3-enriched atmospheres. We used a combination of gas chromatography-mass spectrometry (GC-TOF-MS), ultra-performance liquid chromatography-Orbitrap mass/mass spectrometry (UPLC-Orbitrap-MS/MS) and headspace solid phase micro extraction (HS-SPME) coupled with GC-MS to identify and semi-quantify 49 primary metabolites (sugars, amino and organic acids), 132 polar secondary metabolites (mainly polyphenols) and 70 volatile compounds. Multivariate statistical approaches were used to characterize the variation in metabolite content during the strawberry fruit postharvest life and to identify the biochemical pathways which are most affected in the senescence processes. Preliminary analysis pointed out that changes in primary metabolism were possibly related to responses to abiotic stress.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Allelic Variation of MYB10 Is the Major Force Controlling Natural Variation in Skin and Flesh Color in Strawberry (Fragaria spp.) Fruit

    Get PDF
    Independent mutations in the transcription factor MYB10 cause most of the anthocyanin variation observed in diploid woodland strawberry (Fragaria vesca) and octoploid cultivated strawberry (Fragaria x ananassa). The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. xananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.Peer reviewe

    An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes

    No full text
    Up to 95% of the liquid volume in an e-cigarette consists of propylene glycol. Previous research has shown that propylene glycol can generate diacetyl and formaldehyde when heated. New research shows that propylene glycol can also generate methylglyoxal, an alpha di-carbonyl compound recently shown to cause epithelial necrosis at even lower concentrations than diacetyl, the flavoring chemical associated with bronchiolitis obliterans (“Popcorn Lung”). We analyzed chemical emissions from 13 JUUL pod flavors. Diacetyl and methylglyoxal was detected in 100% of samples with median concentration (range) of 20 µg/m3 (less than limit of quantification: 54 µg/m3) and 4219 µg/m3 (677–15,342 µg/m3), respectively. We also detected acetaldehyde (median concentration: 341 µg/m3) and propionaldehyde (median concentration: 87 µg/m3) in all samples. The recent evidence that methylglyoxal is more cytotoxic to airway epithelial cells than diacetyl makes this an urgent public health concern. Current smokers considering e-cigarettes as a smoking cessation tool, and never users, who may be under the impression that e-cigarettes are harmless, need information on emissions and potential risks to make informed decisions
    corecore